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Abstract
We consider N vicious walkers moving in one dimension in a one-body potential
v(x). Using the backward Fokker–Planck equation we derive exact results for
the asymptotic form of the survival probability Q(x, t) of vicious walkers
initially located at (x1, . . . , xN) = x, when v(x) is an arbitrary attractive
potential. Explicit results are given for a square-well potential with absorbing
or reflecting boundary conditions at the walls, and for a harmonic potential
with an absorbing or reflecting boundary at the origin and the walkers starting
on the positive half line. By mapping the problem of N vicious walkers in
zero potential onto the harmonic potential problem, we rederive the results by
Fisher (1984 J. Stat. Phys. 34 667) and Krattenthaler et al (2000 J. Phys. A:
Math. Gen. 33 8835) respectively for vicious walkers on an infinite line and
on a semi-infinite line with an absorbing wall at the origin. This mapping also
gives a new result for vicious walkers on a semi-infinite line with a reflecting
boundary at the origin: Q(x, t) ∼ t−

N(N−1)

2 .

PACS numbers: 05.40.−a, 02.50.Ey, 05.40.Fb

1. Introduction

Consider N symmetric random walkers which annihilate on meeting each other but otherwise
do not interact. This concept of short-ranged interacting random walkers was introduced by
M E Fisher as the vicious walkers model [1].

One of the main properties of interest in this model is the survival probability Q(x, t) that
none of the N vicious walkers with initial position coordinates (x1, x2, . . . , xN) = x has met
another up to time t, i.e. none of them has been annihilated up to time t.

Fisher and Huse [1, 2] determined the survival probability for N vicious walkers moving
on an infinite line. For large times, Q(x, t) decays as a power:

Q(x, t) ∼ t−
N(N−1)

4 . (1)

Interesting results also arise when further conditions are imposed on the movement of the
vicious walkers by the use of absorbing or reflecting walls, where all walkers are initially

0305-4470/04/215493+09$30.00 © 2004 IOP Publishing Ltd Printed in the UK 5493

http://stacks.iop.org/ja/37/5493


5494 A J Bray and K Winkler

located on the same side of the boundary (the case where there are walkers on both sides
decouples into two independent problems). While Fisher [1] found the survival probability
problem of vicious walkers with an absorbing boundary at the origin only for N = 2,
Krattenthaler et al [3] were able to determine exact asymptotic forms for N vicious walkers
starting from equi-spaced lattice points:

Q(x, t) ∼ t−
N2

2 . (2)

By evaluating the scaling limit Katori and Tanemura [4] showed that this asymptotic behaviour
holds for arbitrary initial conditions on a continuous line.

In this paper we introduce the interesting problem of N vicious walkers moving in an
attractive one-body potential v(x), i.e. the full potential function has the separable form
V (x) = ∑N

i=1 v(xi). Treating both time and space as continuous, we investigate the survival
probability of N vicious walkers with equal diffusion constants D. The equation of motion for
walker i is taken to be

ẋi = −∂V

∂xi

+ ηi(t) (3)

where the Langevin noise ηi(t) is a Gaussian white noise with mean zero and correlator

〈ηi(t)ηj (t
′)〉 = 2Dδij δ(t − t ′). (4)

For a square-well potential of width L we consider three different combinations of absorbing
and reflecting walls and find an exponential decay for the survival probability of the general
form Q(x, t) ∼ e−θN t . For two reflecting walls the exponent θN is determined to be

θRR
N = D

π2

L2

N(N − 1)(2N − 1)

6
. (5)

In the case of one reflecting and one absorbing wall we obtain

θRA
N = D

π2

L2

N(2N + 1)(2N − 1)

12
(6)

while for two absorbing walls the exponent of the asymptotic decay is

θAA
N = D

π2

L2

N(N + 1)(2N + 1)

6
. (7)

An interesting potential which turns out to be a powerful tool is the problem of N vicious
walkers in the harmonic potential V (x) = a

2 x2. The asymptotic behaviour for large times is
determined to be an exponential decay independent of the diffusion constant:

θN = N(N − 1)

2
a. (8)

This result also provides a mechanism to determine the survival probability of N vicious
walkers on an infinite line in a simple way. By mapping the zero-potential problem to the
harmonic potential problem, we derive Fisher’s result [1] and also the result by Krattenthaler
et al [3] with an absorbing wall at the origin. Furthermore we are able to obtain, to our
knowledge, a new result for the survival probability of N vicious walkers on a semi-infinite
line with a reflecting boundary at the origin, which decays as

Q(x, t) ∼ t−
N(N−1)

2 . (9)

The outline of the paper is as follows. In section 2 we present the method for a general one-
body potential v(x), while in section 3 we give explicit results for square-well and harmonic
potentials. In section 4 we revisit the case of zero potential, obtaining the known results, and
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a new result for a system with a reflecting boundary, through a transformation to the harmonic
problem. Section 5 is a short conclusion.

2. The method

The dynamics of a random walker, with position coordinate xi , moving in a potential V (x)

is described, in continuous space and time, by the Langevin equation (3) with noise
correlator (4).

The probability Q(x, t) that all N vicious walkers, i = 1, . . . , N , have survived up to
time t, given that they started at {xi}, satisfies the corresponding backward Fokker–Planck
equation:

∂Q(x, t)

∂t
= D

N∑
i=1

∂2

∂x2
i

Q(x, t) −
N∑

i=1

∂V (x)

∂xi

∂Q(x, t)

∂xi

. (10)

For convenience we start by defining the survival probability q(xi, t) of just one random
walker moving in a potential restricted by the imposed boundary conditions. This survival
probability q(xi, t) satisfies the backward Fokker–Planck equation

∂q(xi, t)

∂t
= D

∂2

∂x2
i

q(xi, t) − dv(xi)

dxi

∂q(xi, t)

∂xi

(11)

where we have used the relation V (x) = ∑
i v(xi) for a one-body potential. For any such

potential, the backward Fokker–Planck equation (11) is separable in time and space. Let us call
these separable solutions, i.e. the solutions of equation (11) satisfying the relevant boundary
conditions, single-walker basis functions. They have the form qj (xi, t) = uj (xi) exp(−λj t),
where λj is the decay rate associated with basis function j and these rates are ordered such
that λ1 < λ2 < λ3 · · ·.

For N non-interacting walkers moving in the same potential, the N-walker basis functions
for the survival probability take the form of products of N single-walker functions, each with
a different space variable xi . Since, however, we are investigating vicious walkers the mutual
annihilation property must be respected. Since two walkers die when arriving at the same
x-coordinate, the boundary condition Q(x1, . . . , xn, t) = 0 when xi = xj for any i �= j must be
respected. This property is ensured by constructing Q(x, t) using antisymmetric combinations
of products of N single-walker functions, analogous to the antisymmetric construction of the
wavefunction of fermions [1]. The N-walker basis functions of the vicious walker problem
with N walkers have, therefore, the form

Qi1,...,iN (x, t) = det Ai1,...,iN (12)

where the elements of the N × N matrix A are given by

Ai1,...,iN
nm = qin(xm, t). (13)

The full solution Q(x, t) is a linear superposition of these basis functions with coefficients
determined by the initial condition.

To solve the problem of N vicious walkers in an arbitrary potential, therefore, we need to
find the single-walker basis functions qj (xi, t) appropriate to the imposed boundary conditions.
For an absorbing boundary at x = a the functions qj (xi, t) must satisfy

qj (xi = a, t) = 0. (14)
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For a reflecting boundary at x = b the boundary condition for the backward Fokker–Planck
equation is in general

∇Q(x, t) · n̂ = 0 (15)

where n̂ is normal to the reflecting boundary [5]. In the one-dimensional case, this expression
implies

dqj

dxi

∣∣∣∣
xi=b

= 0. (16)

Clearly these boundary conditions are also satisfied by the functions Qi1,...,iN (x, t), since the
latter is just an antisymmetrized product of single-walker basis functions.

Consider now the late-time limit, t → ∞. Each antisymmetrized product in the expression
for Q(x, t) contains N different relaxation factors exp(−λj t). The slowest-decaying term in
the sum, therefore, is the term in which the relaxation rates are λ1, λ2, . . . , λN . It follows that,
asymptotically,

Q(x, t) ∝ det B1,2,...,N exp(−θN t) (17)

where B1,2,...,N is just the N × N matrix with elements Bnm = un(xm) (n,m = 1, . . . , N),
i.e. it is constructed using the N slowest-decaying single-walker basis functions, and the total
decay rate is

θN =
N∑

j=1

λj . (18)

The following sections provide some applications of this general result.

3. Results for vicious walkers in a potential

In this section we discuss two examples of N vicious walkers in a potential and determine the
decay of the survival probability Q(x, t).

3.1. The square-well potential

Consider a square-well potential which has two walls of infinite potential, one at the origin
and the other at x = L, and vanishes between the walls. A vicious walker restricted to move
between the walls satisfies the backward Fokker–Planck equation:

∂q(xi, t)

∂t
= D

∂2q(xi, t)

∂x2
i

. (19)

This equation can be solved in general by separation of variables, which amounts in this case
to writing the solution as a spatial Fourier series. Different solutions result from the various
sets of boundary conditions imposed by the property of the walls.

3.1.1. Two reflecting walls. For two reflecting walls the spatial derivative of q(xi, t) must
be zero at x = 0 and x = L. In this case, therefore q(xi, t) is given by Fourier cosine series
with basis functions

qn(xi, t) = exp

(
−n2π2Dt

L2

)
cos

(π

L
nxi

)
n = 0, 1, . . . . (20)
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The survival probability is constructed as a superposition of antisymmetrized products of these
basis functions:

Q(x, t) =
∑
i1

· · ·
∑
iN

Ci1,...,iN det Ai1,...,iN

=
∑
i1

· · ·
∑
iN

Ci1,...,iN exp

(
−π2Dt

L2

N∑
n=1

i2
n

)
det Bi1,...,iN (21)

where

Bi1,...,iN
nm = cos

(π

L
inxm

)
. (22)

To evaluate the long-time behaviour we keep only the N longest-lived modes, given by the
N smallest values, i = 0, 1, . . . , N − 1 of in. Using

∑N−1
i=0 i2 = N(N − 1)(2N − 1)/6 we

obtain, for the asymptotic time dependence,

Q(x, t) ∼ exp

(
−π2Dt

L2

N(N − 1)(2N − 1)

6

)
. (23)

3.1.2. One reflecting and one absorbing wall. For an absorbing wall at the origin and a
reflecting wall at x = L the boundary conditions are satisfied by a Fourier sine series with
basis functions

qn(xi, t) = exp

(
− (2n + 1)2π2Dt

4L2

)
sin

( π

2L
(2n + 1)xi

)
n = 0, 1, . . . . (24)

Analogous to the preceding case the survival probability for all N vicious walkers is constructed
and the asymptotic survival probability for large time is evaluated using

∑N−1
i=0 (2i + 1)2 =

N(2N + 1)(2N − 1)/3 to give the asymptotic decay

Q(x, t) ∼ exp

(
−π2Dt

L2

N(2N + 1)(2N − 1)

12

)
. (25)

3.1.3. Two absorbing walls. In the case of two absorbing walls the basis functions have to
vanish at both x = 0 and x = L. A Fourier sine series is therefore appropriate, with basis
functions

qn(xi, t) = exp

(
−n2π2Dt

L2

)
sin

(π

L
nxi

)
n = 1, 2, . . . . (26)

This is very similar to the result for two reflecting boundaries, except that the spatial functions
are sines so the sum begins with n = 1. The large-time behaviour Q(x, t) is given by

Q(x, t) ∼ exp

(
−π2Dt

L2

N(N + 1)(2N + 1)

6

)
. (27)

Before proceeding to the harmonic potential, we note that the inequalities 2N(N − 1)(2N −
1) < N(2N + 1)(2N − 1) < 2N(N + 1)(2N + 1), for all N � 1, imply that for a well of
given size the decay is fastest with two absorbing boundaries and slowest with two reflecting
boundaries, as is intuitively clear.
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3.2. The harmonic potential

A harmonic potential V (x) = a
2 x2 is considered for which the backward Fokker–Planck

equation for the one–walker basis function reads

∂q(xi, t)

∂t
= D

∂2

∂x2
i

q(xi, t) − axi

∂q(xi, t)

∂xi

. (28)

This equation can be transformed into an imaginary-time Schrödinger equation by the
substitution q(xi, t) = exp

(
ax2

i

/
4D

)
ψ(xi, t) to give

∂ψ(xi, t)

∂t
= D

∂2

∂x2
i

ψ(xi, t) +

(
a

2
− a2x2

i

4D

)
ψ(xi, t). (29)

This equation has solutions of the form ψ(xi, t) = e−λtu(xi), where u(xi) satisfies the ordinary
differential equation(

D
d2

dx2
i

+

(
a

2
− a2x2

i

4D

))
u(xi) = −λu(xi). (30)

This equation is equivalent to the time-independent Schrödinger equation for the harmonic
oscillator. The eigenvalues and eigenfunctions of this eigenvalue problem are well known:
see for example a similar problem in [6]. The eigenfunctions have the form

un(xi) = Hn

(
xi

√
a

2D

)
exp

(
− a

4D
x2

i

)
(31)

where the functions Hn(x) are the Hermite polynomials defined by

Hn(y) = (−1)n ey2 dn

dyn
e−y2

. (32)

The corresponding eigenvalues are λn = na, where n = 0, 1, 2, . . . . The original basis
functions q(xi, t) are given by qn(xi, t) = Hn

(
xi

√
a

2D

)
exp(−λnt).

Applying the antisymmetrization process to determine the survival probability of N vicious
walkers in a harmonic potential we obtain the asymptotic time dependence:

Q(x, t) ∼ exp

(
−at

N−1∑
i=0

i

)
(33)

giving

Q(x, t) ∼ exp

(
−at

N(N − 1)

2

)
. (34)

This approach is readily extended to the case where there is a reflecting or absorbing
boundary at x = 0 and all the walkers start on the same side of the boundary (if there
are walkers on both sides, the problem decouples into two independent problems). For
a reflecting boundary, the boundary condition u′(0) = 0 selects only the even-numbered
Hermite polynomials, n = 0, 2, 4, . . . , and

Q(x, t) ∼ exp

(
−at

N−1∑
i=0

2i

)

= exp[−atN(N − 1)] (reflecting wall). (35)
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For an absorbing boundary, the boundary condition u(0) = 0 selects the odd-numbered
Hermite polynomials to give

Q(x, t) ∼ exp

(
−at

N∑
i=1

(2i − 1)

)

= exp[−atN2] (absorbing wall). (36)

In the following section we show how these results can be used to compute the survival
probability of N vicious walkers in zero potential, with and without an absorbing or reflecting
wall, by mapping the problem back to the oscillator problem.

4. Vicious walkers on a line

Here the case of N vicious walkers restricted by no potential is investigated. This problem
can be solved in a quite simple way by mapping it to the problem of N vicious walkers
in a harmonic potential and using the previous results. Again, we consider the Langevin
equation (3), but with V (x) = 0, and let all N vicious walkers start to move at time t = t0. We
introduce the following mapping from x, t to the new coordinates X, T by [7]

X = x√
2Dt

t = t0 eT . (37)

Then the Langevin equation (3) transforms to

dXi(T )

dT
= −1

2
Xi(T ) + ξi(T ) (38)

where ξi(T ) = √
t0/2D eT/2ηi(t0 eT ) is a Gaussian white noise with mean zero and correlator

〈ξi(T )ξj (T
′)〉 = δij δ(T − T ′). (39)

The corresponding backward Fokker–Planck equation in the new coordinates is

∂Q(X, T )

∂T
= 1

2

N∑
i=1

∂2

∂X2
i

Q(X, T ) − 1

2

N∑
i=1

Xi

∂Q(X, T )

∂Xi

(40)

where the space coordinates are now the starting points of the vicious walkers, given by

Xi(T = 0) = xi(t0)√
2Dt0

. (41)

In the new coordinates this problem looks identical to the harmonic potential problem with
a = 1/2 and D = 1/2. Hence the asymptotic (in time) solution for the survival probability of
N vicious walkers is, according to our previous results,

Q(X, T ) ∼ exp

(
−T

2

N−1∑
i=0

i

)
det BH (42)

where (BH )nm = Hn−1(Xm/
√

2) and n,m = 1, . . . , N . Mapping back to the original
coordinates (x, t) leads to the survival probability

Q(x, t) ∼
(

t

t0

)− 1
2

∑N−1
i=0 i

det BL (43)
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where (BL)nm = Hn−1(xm/2
√

Dt0), with n,m = 1, . . . , N . The determinant det BL is
proportional to the Vandermonde determinant [1]: det BL = (Dt0)

−N(N−1)/2 ∏
i<j |xi − xj |,

and all t0-dependence drops out, as it must, to give the long-time behaviour

Q(x, t) ∼ t−
N(N−1)

4 (44)

which is just the result Fisher obtained [1]. But our approach to the problem also gives a
simple way to obtain expressions for the survival probability for N vicious walkers with an
absorbing or reflecting wall at the origin (and all walkers starting on one side of the wall).

The essential arguments have been given in the preceding subsection. For an absorbing
(reflecting) boundary, only the odd (even) basis functions contribute. Note first that the Fisher
result (44) follows immediately from (34) on setting a = 1/2 and T = ln(t/t0). The detailed
discussion above was given mainly to show how the arbitrary scale t0 drops out. To obtain
the asymptotic results for a reflecting or absorbing wall at the origin, we can simply make the
same replacements in equations (35) and (36) respectively. For the absorbing boundary, we
recover the result of Krattenthaler et al [3]:

Q(x, t) ∼ t−
N2

2 (absorbing wall) (45)

while for a reflecting wall we obtain

Q(x, t) ∼ t−
N(N−1)

2 (reflecting wall). (46)

The latter is, to our knowledge, a new result.
As a final comment we note that the case where the absorbing or reflecting wall moves,

with a displacement xw = ct1/2, is also amenable in principle to exact analysis. The change
of variable (37) maps the problem to one where the N walkers move in a harmonic oscillator
potential, and the absorbing or reflecting wall is at a fixed position in the new coordinates.
This problem has been analysed for a single walker [8], and the survival probability decays
as t−θ , where the exponent θ is found to vary continuously with the amplitude, c, of the
wall displacement. The same qualitative features will be present for N vicious walkers.
For a reflecting (R) or absorbing (A) boundary, one will obtain a decay exponent θR,A =
N(N − 1)/4 + fR,A(c,N), where fR,A(−∞, N) = 0, corresponding to a rapidly receding
wall, which will be equivalent to no wall at all, and fR(0, N) = N(N − 1)/4, fA(0, N) =
N(N + 1)/4 correspond to a static wall.

5. Conclusion

In this paper we have derived the exact asymptotics for the survival probability of vicious
walkers moving in a square-well potential and a harmonic potential with various combinations
of absorbing and reflecting walls. The results for a harmonic potential have been used to find
the properties of free vicious walkers (zero potential) through a change of variables, and a new
result obtained for the case of a single reflecting boundary. Comparing all results for each
potential one recognizes that the survival probability decays faster when the number of walls
is increased, with absorbing walls causing a faster decrease than reflecting walls, in accord
with intuitive expectations.

Note added in proof. After this paper was submitted for publication we learned that the result in equation (9) has
been obtained independently, using a different method by M Katori and H Tanemura (Preprint math-ph/0402061).
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